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The Rayleigh-Taylor instability of a partially ionized plasma in a porous medium is considered 
in the presence of a variable magnetic field perpendicular to gravity. The cases of two uniform 
partially ionized plasmas separated by a horizontal boundary and exponentially varying density, 
viscosity, magnetic field and neutral particle number density are considered. In each case, the 
magnetic field succeeds in stabilizing waves in a certain wave-number range which were unstable in 
the absence of the magnetic field, whereas the system is found to be stable for potentially stable 
configuration/stable stratifications. The growth rates both increase (for certain wave numbers) and 
decrease (for different wave numbers) with the increase in kinematic viscosity, medium permeability 
and collisional frequency. The medium permeability and collisions do not have any qualitative effect 
on the nature of stability or instability. 

1. Introduction 

A comprehensive account of the Rayleigh-Taylor 
instability under various assumptions of hydromag-
netics has been given by Chandrasekhar [1]. More 
often than not, a partially ionized plasma represents a 
state which exists in the universe, and there are several 
situations in which the interaction between ionized 
and neutral gas components becomes important in 
cosmic physics. Strömgren [2] has reported that ion-
ized hydrogen is limited to certain rather sharply 
bounded regions in space surroundings, for example 
0-type stars and clusters of such stars, and that the gas 
outside these regions is essentially non-ionized. Other 
examples of such situations are given by Alfven's [3] 
theory of the origin of the planetary system, where a 
high ionization rate is suggested to appear from colli-
sions between a plasma and a neutral gas cloud and by 
the absorption of plasma waves due to ion-neutral 
collisions such as in the solar photosphere and chro-
mosphere and in cool interstellar clouds (Piddington 
[4], Lehnert [5]). Following Hans [6], the medium may 
be idealized as a mixture of a hydromagnetic (ionized) 
component and a neutral component, the two inter-
acting through mutual collisional (frictional) effects. 
Hans [6] and Bhatia [7] have shown that the collisions 
have a stabilizing effect on the Rayleigh-Taylor insta-
bility. The magnetic field has been considered to be 
uniform in the above studies. Generally the magnetic 
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field has a stabilizing effect on the instability, but there 
are a few exceptions also. For example, Kent [8] has 
studied the effect of a horizontal magnetic field which 
varies in the vertical direction on the stability of paral-
lel flows and has shown that the system is unstable 
under certain conditions, while in the absence of a 
magnetic field the system is known to be stable. The 
medium has been considered to be non-porous in all 
the above studies. 

Generally, it is accepted that comets consist of a 
dusty 'snowball' of a mixture of frozen gases which in 
the process of their journey changes from solid to gas 
and vice versa. The physical properties of comets, me-
teorites and interplanetary dust strongly suggest the 
importance of porosity in astrophysical context (Mc-
Donnel [9]). In stellar interiors and atmospheres, the 
magnetic field may be (and quite often is) variable (and 
nonuniform) and may altogether alter the nature of 
the instability. Often, the plasma is not fully ionized 
and may be mixed with neutral atoms, and so colli-
sional effects are important. The present paper deals 
with the Rayleigh-Taylor instability of a partially ion-
ized plasma in a porous medium in presence of a 
variable magnetic field perpendicular to gravity. The 
problem is relevant and important in several situa-
tions of geophysics and astrophysics. 

2. Perturbation Equations 

Here we consider an incompressible layer consist-
ing of an infinitely conducting ionized (hydromag-
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netic) fluid of density g, mixed with neutrals of 
density £?d, arranged in horizontal strata and acted on 
by a variable horizontal magnetic field H(H0(z), 0, 0) 
and a gravity force g(0, 0, — g). Assume that both the 
ionized and neutral components behave like contin-
uum fluids and that the effects on the neutral compo-
nent result from the presence of the magnetic field, 
gravity and pressure being neglected. This composite 
plasma layer is assumed to be flowing through an 
isotropic and homogeneous porous medium of poros-
ity e and medium permeability kx. 

The hydromagnetic equations governing the motion 
of the composite plasma through porous medium are 

dq 1 
(1) 

= -Vp + ge + J±(VxH)xH-£- q+^r(qd~q), 
471 Kj £ 

V q = 0, 

1 

+ " f a r P) -vc(qA~q), 

V H = 0, 

S H 
s—=(HV)q-(qV)H, 

s^t+q-V]Q = 0, 

(2) 

(3) 

(4) 

(5) 

(6) 

where g, p and q (u, v, w) denote respectively the den-
sity, pressure and velocity of the hydromagnetic fluid. 
ffd' * c' h ciiiva jJie aiciiiu iui ino »wuwi) VJI uic u t u u a i 
component, the mutual collisional (frictional) fre-
quency between the two components of the composite 
medium, the viscosity of the hydromagnetic (ionized) 
fluid and the magnetic permeability, respectively. 
Equations (1) and (2) represent the equations of 
motion and continuity for the hydromagnetic fluid 
whereas (3) is the equation of motion of the neutral 
component under the assumptions mentioned above. 
Equations (4) and (5) are the Maxwell ones whereas (6) 
represents the fact that the density of a particle re-
mains unchanged as we follow it with its motion. 

The initial stationary state whose stability we wish 
to examine is that of an incompressible hydromag-
netic (ionized) fluid of variable density and viscosity 
arranged in horizontal strata permeated with neutral 
particles in porous medium. The system is acted on by 
a variable horizontal magnetic field H(H0(z), 0,0). 
Consider an infinite horizontal composite layer of 

thickness d bounded by the planes z = 0 and z = d. 
The character of the equilibrium of this initial static 
state is determined, as usual, by supposing that the 
system is slightly disturbed and then following its fur-
ther evolution. 

Let ög, dp, q(u,v,w); h(hx,hy,hz) and qd denote, 
respectively, the perturbations in the hydromagnetic 
fluid density g(z), pressure p(z), velocity (0, 0, 0), mag-
netic field (H0 (z), 0, 0) and neutral component velocity 
(0, 0, 0). Then the linearized hydromagnetic perturba-
tion equations governing the motion of the composite 
plasma through porous medium are 

=-V8p + gbg+ — [(Vxh)xH+{VxH)xh] 
£ or 4n 

V q = 0, 

0<7d 

fa 

dt ~ = v c f a i - t f ) > 

V - h = 0, 

0 h 
e—=(H-V)q-(q-V)H, 

o t 
0 * W £ — OQ — — CO I — I. dt dz 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Analyzing the disturbances into normal modes, we 
assume that the perturbation quantities have an x, y, 
and t dependence of the form 

e x p ( i k x x 4- ik y + ni), 

2 . where kY and kv are horizontal wave numbers, k = 
kl + ky and n is, in general, a complex constant. 

Eliminating qd between (7) and (9) and using (13), 
(7)—(12) gives 

n'+ ~jgu=-ikxbp+^hz(DH0), (14) 

n'+ ^-)gv=-ikydp+ ^^-(ikxhy-ikyhx),(\5) 
K ̂  / T̂ 71 

'-L. v \ n x i f i ' H o n -I \gw=—Dop-\ 
klJ 4n 

ikxh. — D hx — h, 

i kx u + i ky v + D w = 0, 

ikxhx + ik..h.. + Dh, = 0, xx y y z 

DH( 
(16) 

) 

(17) 

(18) 
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enhx = ikxH0u — wDH0, 

enhy = ikxH0v, 

enh, = ikxH0w, 

enbg = — WD O, 

(19) 

(20) 

(21) 

(22) 

where 

n'=- 1 + 
n + v, OCn = 

Q d 
v = — 

0 
and 

d 

Equation (15), with the help of (19) and (20), becomes 

v 
ri + — 1 v = — i ky bp 

+ ^-(ikxH0C + ikywDH0)t (23) 

where C, = ikxv — ikyu is the z-component of vorticity. 
Multiplying (14) by — i kx, (23) by — i ky, adding and 

using (17), we obtain 

n' + — ) QDW = -k2 5p + 
p e kx ky H Q 

4nsn c 

Ll„k2 Hr, 
+ ( D H 0 ) W 

47ren 

i nek 
An 

hz(DH0). (24) 

Eliminating bp between (16) and (24) and using (17)-
(22), we get 

1 
n'[D(gDw) — k2gw]+—[D(gvDw) — k2gvw] 

kl 

4nns 
(25) 

a k 2 

+ j ^ D ( H 2 ) D w + ^ - ( D e)w = 0. 
4nne en 

3. Two Uniform Partially Ionized Plasmas Separated 
by a Horizontal Boundary 

Consider the case when two superposed partially 
ionized plasmas of uniform densities and g2 , uni-
form viscosities and p 2

 a n d uniform magnetic fields 
H 0 l and H 0 2 are separated by a horizontal boundary 
at z = 0. The subscripts 1 and 2 distinguish the lower 
and the upper fluids, respectively. Then, in each region 

of constant g, p, and H, (25) reduces to 

(D2-k2) w = 0. 

The general solution of (26) is 

w =A e+k: + B e~kz, 

(26) 

(27) 

where A and B are arbitrary constants. 
The boundary conditions to be satisfied here are: 

i) The velocity w should vanish when z -> — oo (for 
the lower fluid) and z -> + oo (for the upper fluid). 

ii) w (z) is continuous at z = 0. 
iii) The pressure should be continuous across the in-

terface. Applying the boundary conditions (i) and 
(ii), we have 

wl=Ae + kz, (z < 0), (28) 

w-> = A e~k: (z> 0), (29) 

the same constant A being chosen to ensure the 
continuity of w at z = 0. 

The continuity of pressure implies that 

n'A0(gDw) + ±-A0(evDw)+ £^A0(H2Dw) 
kl 4nne 

g k 2 

+ ~^T A o(Q) wo = 0. (30) 

Applying the condition (30) to the solutions (28) and 
(29), we obtain 

n 3 + [vc (1 + a 0 ) + (ot! vx + a 2 v2)] n2 

+ 
*i 

v c( a i v i + a 2 v2) + 2/c2 V£ — gk(a2—cc1) 
A 

+ vc [2k.2 V\—g k(cc2 — ccl)] = 0, 

where 

(31) 

a , 7 = gl ,2 
01 + 02 

' 1 , 2 
01,2 

For the sake of simplicity, we assume that the Alfven 
velocities of the two fluids are the same, so that 

V2 -v A — 
PeHoi ßeH 02 

4 n{g1+Q2) 47r(^1-fö2) 

(a) Stable Case > 0 2 ) 

For the potentially stable case, > a 2 and equation 
(31) does not involve any change of sign and so does 
not allow any positive root. 

The system is therefore stable. 
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(b) Unstable Case (g2>Qi) 

For the potentially unstable case, if 
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obtain 

(32) 

(31) does not admit any change of sign and so has no 
positive root. Therefore the system is stable. 

If 
2 / c 2 F A

2 < ^ / c ( a 2 - a i ) , (33) 

the constant term in (31) is negative. Equation (31), 
therefore, allows one change of sign and so has one 
positive root. The occurrence of a positive root implies 
that the system is unstable. 

Thus for the unstable case (e2>£>i), the system is 
p e H2 /c2 . 

stable or unstable according as — is greater 
2n 

than or smaller than gk(g 2 — g l). In the absence of a 
magnetic field, (31) has one positive root, and so the 
system is unstable for g2>Qi- But the magnetic field 
has got a stabilizing effect and completely stabilizes 
the wave-number band k > k*, where 

2ng(g2-g1) k* = , sec 9, 
lieH2

0 
(34) 

and 9 is the inclination of the wave vector k to the 
direction of the magnetic field H i.e. kx = k cos 9. 

4. The Case of Exponentially Varying Density, 
Viscosity, Magnetic Field and Neutral Particles 
Number Density 

Equation (25) can be written as 

1 
n'[D (g Dw) — k2 gw]+ —[D(gvDw)—k2gvw] 

+ 
k2 u k2 

(Dg) w + -p-^- D{H2DW) 
en 4nen 

H e k 2
x H 2 k 2 

4nen 
w — 0. 

Let us assume 

8 = 8o eß 

H = Ho e ß 

Qd = Qd 0
e > 

H2(Z) = H2 e" 

(35) 

(36) 

where g0, £do, p0, Hand ß are constants. Equations 
(36) imply that the coefficient of kinematic viscosity v 
and the Alfven velocity FA are constant everywhere. 

Substituting the values of gd, p, Hq in (35) and 
neglecting the effect of heterogeneity on inertia, we 

n 1 k2
x V2 

— + — + 
v0 ky n v0 e 

( D 2 - / c 2 ) w + ^ - w = 0, (37) 
MV0£ 

where v0 = p0/e0. 
Consider the case of two free boundaries. The 

boundary conditions for the case of two free surfaces 
are 

w = D2 w = 0 at z = 0 and z = d. (38) 

The proper solution of (37) satisfying (38) is 

mnz 
w = A sin —;—, (39) 

where A is a constant and m is any integer. 
Substituting (39) in (37), we obtain the dispersion 

relation 
ri 1 k2 V2 

— + — + ^ ^ 

v0 kl nv0s 

m K 
+ k2 gßk2 

nv0e 
= 0.(40) 

(m n \ 2 

Letting I 1 + k — L, the above equation, on sim-

plification, becomes 

+ 

v c ( l + a 0 ) + 
e vf 

Vn v^e 

K 

+ V, ( kl V, 2 
x r A 

+ lk2
xV2-

gßk2 

L 

gßk: 

0. (41) 

If p < 0 (stable stratification), (41j does not admit any 
positive root of n and so the system is always stable for 
disturbances of all wave numbers. 

H ß > 0 (unstable stratification), the system is stable 
or unstable according as 

gßk2 

k2 V2 > or < 
L 

(42) 

The system is clearly unstable for ß > 0 in the absence 
of a magnetic field. However, the system can be com-
pletely stabilized by a magnetic field as can be seen 
from (42), if 

4 KLL • 

The magnetic field therefore succeeds in stabilizing 
wavenumbers in the range 

(43) 7 Qß 7 (mn 
k2 > V^ sec2 9- I — 

a V2 
V A 
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which were unstable in the absence of a magnetic field. The collisions and medium permeability do not have 
any qualitative effect on the nature of the stability. 

Thus if 

ß>0 and k 2
x V 2 < ^ - , 

(41) has one positive root. Let n0 denote the positive root of (41). Then 

v c ( l+oe 0 ) + 
e vf 

«o + 
Vn V„£ 

*1 

gßk: 

Wf) + vr (44) 

To study the behaviour of growth rates of unstable modes with respect to viscosity, medium permeability and 

collisions, we examine the natures of 
d nn dn dn 

- and — - analytically. Equation (44) yields 
dv 0 dk1 dv 

dM0 

dv'n 

— n 0 ( n 0 + vc) 
kx 

+ 2 < v c ( l 4 -a 0 ) 4- °< - • VoVc£ + \klV* n o + 
k! 

gßk2Y 
(45) 

d»p 

d k , 

d^c 
dv. 

72 n0 K + Vc) Kx 

+ 2 < v c(l + a 0 ) 4-
£Vo 

k, "o + k, 
+ I K V2 

d + « o ) n 2 + " - n 0 + y k 2
x V 2 - ^ 

0ßk2Y 
(46) 

£ V 

+ 2 <v c(l +oc0) + 
£Vc 

kx 
n0 + 

V0 Vc £ 

k i 
+ k2V2-

gßt 
(47) 

It is evident from (45) that dn0/dv0 may be negative or positive depending on whether the denominator in (45) 
is positive or negative. The growth rates, therefore, both decrease (for certain wave numbers) and increase (for 
different wave numbers) with the increase in kinematic viscosity. Similarly, the growth rates are found to 
increase and decrease with the increase in medium permeability and collisional frequency. 
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