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The Rayleigh-Taylor instability of a partially ionized plasma in a porous medium is considered
in the presence of a variable magnetic field perpendicular to gravity. The cases of two uniform
partially ionized plasmas separated by a horizontal boundary and exponentially varying density,
viscosity, magnetic field and neutral particle number density are considered. In each case, the
magnetic field succeeds in stabilizing waves in a certain wave-number range which were unstable in
the absence of the magnetic field, whereas the system is found to be stable for potentially stable
configuration/stable stratifications. The growth rates both increase (for certain wave numbers) and
decrease (for different wave numbers) with the increase in kinematic viscosity, medium permeability
and collisional frequency. The medium permeability and collisions do not have any qualitative effect

on the nature of stability or instability.

1. Introduction

A comprehensive account of the Rayleigh-Taylor
instability under various assumptions of hydromag-
netics has been given by Chandrasekhar [1]. More
often than not, a partially ionized plasma represents a
state which exists in the universe, and there are several
situations in which the interaction between ionized
and neutral gas components becomes important in
cosmic physics. Stromgren [2] has reported that ion-
ized hydrogen is limited to certain rather sharply
bounded regions in space surroundings, for example
O-type stars and clusters of such stars, and that the gas
outside these regions is essentially non-ionized. Other
examples of such situations are given by Alfvén’s [3]
theory of the origin of the planetary system, where a
high ionization rate is suggested to appear from colli-
sions between a plasma and a neutral gas cloud and by
the absorption of plasma waves due to ion-neutral
collisions such as in the solar photosphere and chro-
mosphere and in cool interstellar clouds (Piddington
[4], Lehnert [5]). Following Hans [6], the medium may
be idealized as a mixture of a hydromagnetic (ionized)
component and a neutral component, the two inter-
acting through mutual collisional (frictional) effects.
Hans [6] and Bhatia [7] have shown that the collisions
have a stabilizing effect on the Rayleigh-Taylor insta-
bility. The magnetic field has been considered to be
uniform in the above studies. Generally the magnetic
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field has a stabilizing effect on the instability, but there
are a few exceptions also. For example, Kent [8] has
studied the effect of a horizontal magnetic field which
varies in the vertical direction on the stability of paral-
lel flows and has shown that the system is unstable
under certain conditions, while in the absence of a
magnetic field the system is known to be stable. The
medium has been considered to be non-porous in all
the above studies.

Generally, it is accepted that comets consist of a
dusty ‘snowball’ of a mixture of frozen gases which in
the process of their journey changes from solid to gas
and vice versa. The physical properties of comets, me-
teorites and interplanetary dust strongly suggest the
importance of porosity in astrophysical context (Mc-
Donnel [9]). In stellar interiors and atmospheres, the
magnetic field may be (and quite often is) variable (and
nonuniform) and may altogether alter the nature of
the instability. Often, the plasma is not fully ionized
and may be mixed with neutral atoms, and so colli-
sional effects are important. The present paper deals
with the Rayleigh-Taylor instability of a partially ion-
ized plasma in a porous medium in presence of a
variable magnetic field perpendicular to gravity. The
problem is relevant and important in several situa-
tions of geophysics and astrophysics.

2. Perturbation Equations

Here we consider an incompressible layer consist-
ing of an infinitely conducting ionized (hydromag-
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netic) fluid of density o, mixed with neutrals of
density g4, arranged in horizontal strata and acted on
by a variable horizontal magnetic field H(H(z), 0, 0)
and a gravity force g (0, 0, —g). Assume that both the
ionized and neutral components behave like contin-
uum fluids and that the effects on the neutral compo-
nent result from the presence of the magnetic field,
gravity and pressure being neglected. This composite
plasma layer is assumed to be flowing through an
isotropic and homogeneous porous medium of poros-
ity ¢ and medium permeability k.

The hydromagnetic equations governing the motion
of the composite plasma through porous medium are
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where g, p and ¢ (u, v, w) denote respectively the den-
sity, pressure and velocity of the hydromagnetic fluid.
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component, the mutual collisional (frictional) fre-
quency between the two components of the composite
medium, the viscosity of the hydromagnetic (ionized)
fluid and the magnetic permeability, respectively.
Equations (1) and (2) represent the equations of
motion and continuity for the hydromagnetic fluid
whereas (3) is the equation of motion of the neutral
component under the assumptions mentioned above.
Equations (4) and (5) are the Maxwell ones whereas (6)
represents the fact that the density of a particle re-
mains unchanged as we follow it with its motion.
The initial stationary state whose stability we wish
to examine is that of an incompressible hydromag-
netic (ionized) fluid of variable density and viscosity
arranged in horizontal strata permeated with neutral
particles in porous medium. The system is acted on by
a variable horizontal magnetic field H(H,/(z), 0, 0).
Consider an infinite horizontal composite layer of
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thickness d bounded by the planes z=0 and z=d.
The character of the equilibrium of this initial static
state is determined, as usual, by supposing that the
system is slightly disturbed and then following its fur-
ther evolution.

Let dg, op, q(u,v,w); h(h,, h,, h,) and ¢, denote,
respectively, the perturbations in the hydromagnetic
fluid density ¢ (z), pressure p(z), velocity (0, 0, 0), mag-
netic field (H (z), 0, 0) and neutral component velocity
(0, 0, 0). Then the linearized hydromagnetic perturba-
tion equations governing the motion of the composite
plasma through porous medium are

00q He
e n[(Vxh)xH+(l7xH)><h]
ﬂ Qd vc
» = qa—9); (7)
V-q=0, ®)
d
)] 9
V-h=0, (10)
oh
e 5 =(H-V)q—(q-V)H, (11)

0 do
e—dg=—o|—]. 12

o <dz> 12

Analyzing the disturbances into normal modes, we
assume that the perturbation quantities have an x, y,
and t dependence of the form
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where k, and k, are horizontal wave numbers, k*=
kZ+k} and n is, in general, a complex constant.

Eliminating g, between (7) and (9) and using (13),
(7)-(12) gives
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Equation (15), with the help of (19) and (20), becomes
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where { =ik, v—ik,uis the z-component of vorticity.
Multiplying (14) by —ik,,(23) by —ik,, adding and
using (17), we obtain
ue kX ky H%
4nen

(DHy)w

(n’-+— kl>ng=—k28p+

1
+ uek)%HO
dmen
iuk

— L, (DH,).

4n 4

Eliminating dp between (16) and (24) and using (17)—
(22), we get
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3. Two Uniform Partially Ionized Plasmas Separated
by a Horizontal Boundary

Consider the case when two superposed partially
ionized plasmas of uniform densities ¢, and g,, uni-
form viscosities ¢; and u, and uniform magnetic fields
H,, and H,, are separated by a horizontal boundary
at z=0. The subscripts 1 and 2 distinguish the lower
and the upper fluids, respectively. Then, in each region
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of constant g, y, and H, (25) reduces to
(D*—k*)w=0. (26)
The general solution of (26) is
w=Ae"™ +Be ¥, (27)

where A and B are arbitrary constants.
The boundary conditions to be satisfied here are:

i) The velocity w should vanish when z— — oo (for
the lower fluid) and z — + oo (for the upper fluid).
ii) w(z) is continuous at z =0.
iii) The pressure should be continuous across the in-
terface. Applying the boundary conditions (i) and
(ii), we have

w,=Ae**,  (z<0),

wy=Ae ¥, (z>0),

(28)
(29)

the same constant 4 being chosen to ensure the
continuity of w at z=0.

The continuity of pressure implies that
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Applying the condition (30) to the solutions (28) and
(29), we obtain
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For the sake of simplicity, we assume that the Alfvén
velocities of the two fluids are the same, so that

ﬂeH<2)1 #thz)z

2 _ . )
dn(o,+0,) 4m(o+e,)

A

(a) Stable Case (0,>0,)

For the potentially stable case, o, > o, and equation
(31) does not involve any change of sign and so does
not allow any positive root.

The system is therefore stable.
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(b) Unstable Case (0,>0,)
For the potentially unstable case, if

2k2VE>gk(a,—ay), (32)

(31) does not admit any change of sign and so has no
positive root. Therefore the system is stable.
If

2k VR <gk(ay—ay), (33)

the constant term in (31) is negative. Equation (31),
therefore, allows one change of sign and so has one
positive root. The occurrence of a positive root implies
that the system is unstable.
Thus for the unstable case (9, >9;), the system is
u H? k2

stable or unstable according as _3_2_;‘ is greater
T

than or smaller than g k(9,—0,). In the absence of a
magnetic field, (31) has one positive root, and so the
system is unstable for g, >g,. But the magnetic field
has got a stabilizing effect and completely stabilizes
the wave-number band k > k*, where
o 27g9(ea—0)
pu H3
and 6 is the inclination of the wave vector k to the
direction of the magnetic field H i.e. k,=k cos 0.

k ec?0, (34)

4. The Case of Exponentially Varying Density,
Viscosity, Magnetic Field and Neutral Particles
Number Density

Equation (25) can be written as
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where 0, 04, o> H,, and B are constants. Equations
(36) imply that the coefficient of kinematic viscosity v
and the Alfvén velocity V, are constant everywhere.

Substituting the values of g, g4, #, H in (35) and
neglecting the effect of heterogeneity on inertia, we
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obtain

" + - +
Vo k,

where v, = o/0o-

Consider the case of two free boundaries. The
boundary conditions for the case of two free surfaces
are

22
kx VA
nvgyé

(D> —Kk2) w + LS
nvye ’

0

(37)

w=D?>w=0 at z=0 and z=d. (38)
The proper solution of (37) satisfying (38) is
. mnz
w = A sin (39)
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where A is a constant and m is any integer.
Substituting (39) in (37), we obtain the dispersion

relation
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Letting (d ) +k?*=L, the above equation, on sim-

plification, becomes
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if <0 (stabie stratification), (41) does not admit any
positive root of n and so the system is always stable for
disturbances of all wave numbers.

If B> 0 (unstable stratification), the system is stable
or unstable according as

kZ
k2VZ>or < gi :

(41)

(42)

The system is clearly unstable for >0 in the absence
of a magnetic field. However, the system can be com-
pletely stabilized by a magnetic field as can be seen
from (42), if

gpk?

k:L

The magnetic field therefore succeeds in stabilizing
wavenumbers in the range
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which were unstable in the absence of a magnetic field. The collisions and medium permeability do not have
any qualitative effect on the nature of the stability.
Thus if

k2

B>0 and k2Vi< %,

(41) has one positive root. Let n, denote the positive root of (41). Then
k? k?
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To study the behaviour of growth rates of uﬁstable mé)des with respect to viscosity, medium permeability and
collisions, we examine the natures of e 5 o and e analytically. Equation (44) yields
dv, dk, dv,
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It is evident from (45) that dn,/dv, may be negative or positive depending on whether the denominator in (45)
is positive or negative. The growth rates, therefore, both decrease (for certain wave numbers) and increase (for
different wave numbers) with the increase in kinematic viscosity. Similarly, the growth rates are found to
increase and decrease with the increase in medium permeability and collisional frequency.
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